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† Departamento de Fı́sica Téorica, Universidad de Zaragoza, 50009 Zaragoza, Spain
‡ Instituto de F́ısica de la Universidad de Guanajuato, Apdo Postal E-143, León, Guanajuato,
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Abstract. The Schr̈odinger equation with attractiveδ potential has been previously studied in
the supersymmetric quantum mechanical approach by a number of authors, but they all used
only the particular superpotential solution. Here, we introduce a one-parameter family of strictly
isospectral attractiveδ function potentials, which is based on the general superpotential (general
Riccati) solution, we study the problem in some detail and suggest possible applications.

The δ(x) (pseudo)potential is a well known ‘zero-range’ potential with applications in
solid state physics [1] and many other areas. It has been used as a textbook example
for many mathematical procedures in quantum mechanics. One such technique, Witten’s
supersymmetric scheme [2], has been employed for the attractive delta potential by several
authors [3–5]. However, in all those studies there is a missing point, namely all the authors
have so far used only the particular Witten superpotentialW0, which is related to the ground
state wavefunction in the well-known wayu0 = e−

∫ x
W0, and no mention is made of the

general superpotential, i.e. the general Riccati solution for theδ potential case. In this paper
we present the supersymmetric approach to the attractive delta potential problem based on
the general superpotential.

To help the reader to better understand our problem we start with its underlying
mathematical scheme. Thus, we consider a Riccati equation (RE) of the typeW

′ =
−W 2 + V2(x) for which we suppose to know a particular solutionW0. Let W1 = W0 + u
be the second solution. By substitutingW1 in RE one gets the Bernoulli equation
u
′ = −u2−2W0u, which by means ofu = 1/v is turned into the first-order linear differential

equationv
′ − 2W0v − 1 = 0. The latter can be solved by employing the integration factor

f0 = e−2
∫ x
W0, leading to the solutionv = f −1

0 (C + ∫ x f0), whereC is an arbitrary
integration constant. Returning to the general Riccati solution, one gets

W1 = W0+ f0

C + ∫ x f0
= W0+ d

dx

[
ln

(
C +

∫ x

f0

)]
. (1)

The point now is that in the process of factorizing the one-dimensional Schrödinger
operator−d2/dx2+V1(x) the aforementioned Riccati solutions occur in the non-operatorial
part of the factorization operators as follows.W0 occurs in the case of Witten’s factorization
[2] (−d/dx + W0)(d/dx + W0)(≡ A

†
0A0), whereasW1 occurs for Mielnik’s factorization

[6] (−d/dx+W1)(d/dx+W1)(≡ A†1A1). Notice that [A†0, A0] = 2W
′
0, whereas [A†1, A1] =
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2W
′
1. We further notice that

√
f0 is the ground state (nodeless) wavefunction ofV1 and

1V0 = −2W
′
0 is the Darboux transform contribution to the potentialV1, leading to a new

potentialV1,D0 = V1 − 2W
′
0 ≡ V2, which in supersymmetric quantum mechanics is known

as the supersymmetric partner of the initial potentialV1. Even more interesting is that√
f0/(C +

∫ x
f0) can be interpreted as the ground state wavefunction corresponding to

Mielnik’s superpotential (see below), and1V1 = −2W
′
1 can be thought of as the general

Darboux transform part in the potential. Therefore, there is a one-parameter family of
Darboux potentials given byV1,D1 = V1 − 2W

′
1, which is strictly isospectral to the initial

one, in the sense that each member of the family has the same supersymmetric partnerV2

and the same energy eigenvalues and scattering amplitudes asV1. In terms of the ground
state wavefunction ofV1, ψ0 =

√
f0, each member of the strictly isospectral family of

potentials reads

Viso;i = V1+1V1 = V1(x)− 2
d2

dx2
ln

(
Ci +

∫ x

f0

)
(2)

or

Viso;i = V1(x)− 4ψ0ψ
′
0

Ci +
∫ x
ψ2

0

+ 2ψ4
0

(Ci +
∫ x
ψ2

0)
2
. (3)

For all half-line potentials the lower limit of the integral term is zero, whereas for the
full-line potentials is−∞. The ground state wavefunctions of this family are of the type
ψ0,iso = ψ0/(C +

∫ x
ψ2

0). Indeed, one can write

W1 = − d

dx
ln

[
ψ0

(C + ∫ x ψ2
0)

]
= − d

dx
lnψ0,iso (4)

which is the supersymmetric formula introducing the superpotential in terms of the ground
state wavefunction. If one considers these isospectral functions as quantum mechanical
wavefunctions, the problem of the normalization constant should be contemplated. It is
easy to see that the normalization constant isNiso =

√
C(C + 1) [7] and as suchC is not

allowed to be in [−1, 0]. TheC = 0 limit is known as the Pursey limit [8], whereas the
C = −1 limit is the Abraham–Moses limit [9]. However, in this work we shall consider
both the case with the normalization constant included and the case without it.

Let us now pass to the attractivegδ(x) potential, whereg < 0 gives the strength of
the interaction (the binding power). It has been shown thatW0 = g

2sign(x) [4]. In other

words,A0 = d/dx + g

2sign(x) andA†0 = −d/dx + g

2sign(x). Indeed, one cannot use the
Heaviside step function as the superpotential since its square is not a constant. Therefore,
one should work with the sign function, which is a combination of step functions.A†ψ0 = 0
impliesψ0 =

√−g/2eg|x|/2 and this ground state wavefunction is the only one of the bound
spectrum at the energyE0 = −g2/4. Thus, this state will be deleted from the spectrum of
the partner potential, which is purely repulsive. However, the situation is by far the more
interesting in the case of the strictly isospectral construction as one can see in the following.

A simple calculation shows that

I(x) =
∫ x

−∞
ψ2

0(x
′) dx ′ = −1

2
sign(x)eg|x| + sign(x)

2
+ 1

2
. (5)

Thus one gets

Viso = gδiso(x) = gδ(x)+ 2g2 Csign(x)e−g|x|

(1− Csign(x)e−g|x|)2
(6)
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Figure 1. Darboux potential contributions forC equal to 0.00001, 0.10001, 1.10001, 5.10001,
for g = −1 from left to right.

Figure 2. The corresponding isospectral wavefunctions for the same values ofC as in figure 1
showing how in the infinite limit ofC one recovers the originalδ wavefunction. Actually, for
rather low values ofC, the isospectralδ wavefunction is already very close in shape to the
original one.

and the isospectral wavefunction reads

ψ0,iso = −
√
−2g

√
C(C + 1)

sign(x)e−g|x|/2

(1− Csign(x)e−g|x|)
(7)

whereC = 2C+sign(x)+1. The eigenvalue corresponding to the isospectral wavefunction
is the same as for the common delta bound state, i.e.E0 = −g2/4. The analysis of
equations (6) and (7) shows that possible singularities are to be found forC in the interval
(−1,− 1

2], which is excluded when one considers normalizable isospectral wavefunctions.
However, for non-normalizable solutions these singularities should be taken into account.
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Figure 3. Darboux potential contributions forC equal to−1.4, −0.9, (up), and,−0.6, −0.3
(down) for g = −1.

Figure 4. Non-normalizable isospectral wavefunctions for the same values ofC as in figure (3),
together with the original ground stateδ wavefunction displayed in the first plot of the figure
(g = −1).

The plots we did for the isospectral potentials as a function of the isospectral parameter
(figure 1) display a shallow potential well on the negative half-line moving toward the
origin where it is absorbed by the delta singularity there, and on the positive half-line a tail
dying off at increasingC. We also present plots showing the behaviour of the normalized
isospectral wavefunctions for the same values of theC parameter as for the potentials (see
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figure 2). Moreover, figures 3 and 4 display the moving singularity structure when we do
not introduce the normalization constant in equation (7). In summary, we believe that the
strictly isospectral extension of the attractiveδ potential introduced here may be relevant for
many applications, once one allows for a physical origin of theC-dependence. For example,
the parameterC may express the effect of static and/or moving distant boundaries, as well as
sample-size dependence [10, 11]. If one does not discard as unphysical the non-normalizable
isospectral solutions, one may think of the isospectral method as allowing the introduction of
singularities in both wavefunctions and potentials which, apparently, are required to explain
the extra losses of ultracold neutrons at the walls [12].
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